Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
1.
Gastric Cancer ; 27(3): 519-538, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460015

RESUMO

BACKGROUND: Gastric cancer with peritoneal metastasis (PM-GC), recognized as one of the deadliest cancers. However, whether and how the tumor cell-extrinsic tumor microenvironment (TME) is involved in the therapeutic failure remains unknown. Thus, this study systematically assessed the immunosuppressive tumor microenvironment in ascites from patients with PM-GC, and its contribution to dissemination and immune evasion of ascites-disseminated tumor cells (aDTCs). METHODS: Sixty-three ascites and 43 peripheral blood (PB) samples from 51 patients with PM-GC were included in this study. aDTCs in ascites and circulating tumor cells (CTCs) in paired PB were immunophenotypically profiled. Using single-cell RNA transcriptional sequencing (scRNA-seq), crosstalk between aDTCs and the TME features of ascites was inspected. Further studies on the mechanism underlying aDTCs-immune cells crosstalk were performed on in vitro cultured aDTCs. RESULTS: Immune cells in ascites interact with aDTCs, prompting their immune evasion. Specifically, we found that the tumor-associated macrophages (TAMs) in ascites underwent a continuum lineage transition from cathepsinhigh (CTShigh) to complement 1qhigh (C1Qhigh) TAM. CTShigh TAM initially attracted the metastatic tumor cells to ascites, thereafter, transitioning terminally to C1Qhigh TAM to trigger overproliferation and immune escape of aDTCs. Mechanistically, we demonstrated that C1Qhigh TAMs significantly enhanced the expression of PD-L1 and NECTIN2 on aDTCs, which was driven by the activation of the C1q-mediated complement pathway. CONCLUSIONS: For the first time, we identified an immunosuppressive macrophage transition from CTShigh to C1Qhigh TAM in ascites from patients with PM-GC. This may contribute to developing potential TAM-targeted immunotherapies for PM-GC.


Assuntos
Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Ascite , Neoplasias Peritoneais/secundário , Complemento C1q , Evasão da Resposta Imune , Microambiente Tumoral
2.
Cancer Immunol Immunother ; 73(5): 88, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554175

RESUMO

BACKGROUND: Prenatal inflammation exposure (PIE) can increase the disease susceptibility in offspring such as lung cancer. Our purpose was to investigate the mechanisms of PIE on lung cancer. METHODS: Prenatal BALB/c mice were exposed to lipopolysaccharide (LPS), and then, their offspring were intraperitoneally instilled with urethane to establish the two-stage lung cancer carcinogenesis model. At the 48 weeks of age, the offspring mice were killed and lung tissues were collected for HE, immunohistochemistry, immunofluorescence, and Luminex MAGPIX®-based assays. CD11b + F4/80 + tumor-associated macrophages (TAMs) were sorted out from lung tumor tissues by cell sorting technique. Flow cytometry was employed to evaluate the extent of M2-like polarization of TAMs and PD-L1 expression. RESULTS: The offspring of PIE mice revealed more lung lesion changes, including atypical hyperplasia and intrapulmonary metastases. The number of lung nodules, lung organ index, and PCNA, MMP-9 and Vimentin positive cells in lung tissue of PIE group were higher than those of Control group. The increases of mRNA encoding M2 macrophage markers and cytokines in offspring of prenatal LPS-treated mice confirmed the induced effect of PIE on macrophage polarization. Additionally, PIE treatment increased the percentage of CD163 + CD206 + cells in the sorted TAMs. Importantly, endoplasmic reticulum (ER) stress-markers like GRP78/BIP and CHOP, p-IRE1α and XBP1s, and PD-L1 were up-regulated in TAMs from PIE group. Besides, we also observed that IRE1α inhibitor (KIRA6) reversed the M2-like TAMs polarization and metastasis induced by PIE. CONCLUSIONS: IRE1α/XBP1-mediated M2-like TAMs polarization releases the pro-tumorigenic cytokines and PD-L1 expression, which may be the regulatory mechanism of accelerating lung cancer in offspring of mice undergoing PIE.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/patologia , Endorribonucleases/metabolismo , Endorribonucleases/farmacologia , Macrófagos Associados a Tumor/metabolismo , Antígeno B7-H1/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Carcinogênese , Citocinas , Inflamação , Microambiente Tumoral/genética
3.
Cancer Immunol Immunother ; 73(4): 63, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430255

RESUMO

Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment (TME). In colorectal liver metastasis (CLM), TAM morphology correlates with prognosis, with smaller TAMs (S-TAMs) conferring a more favorable prognosis than larger TAMs (L-TAMs). However, the metabolic profile of in vivo human TAM populations remains unknown. Multiparametric flow cytometry was used to freshly isolate S- and L-TAMs from surgically resected CLM patients (n = 14S-, 14L-TAMs). Mass spectrometry-based metabolomics analyses were implemented for the metabolic characterization of TAM populations. Gene expression analysis and protein activity were used to support the biochemical effects of the enzyme-substrate link between riboflavin and (lysine-specific demethylase 1A, LSD1) with TAM morphologies. L-TAMs were characterized by a positive correlation and a strong association between riboflavin and TAM morphologies. Riboflavin in both L-TAMs and in-vitro M2 polarized macrophages modulates LSD1 protein expression and activity. The inflammatory stimuli promoted by TNFα induced the increased expression of riboflavin transporter SLC52A3 and LSD1 in M2 macrophages. The modulation of the riboflavin-LSD1 axis represents a potential target for reprogramming TAM subtypes, paving the way for promising anti-tumor therapeutic strategies.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico , Neoplasias Colorretais/patologia , Microambiente Tumoral , Proteínas de Membrana Transportadoras/metabolismo
4.
Chem Biol Drug Des ; 103(3): e14507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538070

RESUMO

Non-small cell lung cancer (NSCLC) is an aggressive and devastating cancer due to its metastasis induced by increased invasion. Lentinan is a polysaccharide exerting antitumor roles in multiple cancers, including lung cancer. However, the influence of lentinan on cell invasion in NSCLC remains unclear. Cell invasion was detected by transwell analysis. Matrix metallopeptidase 9 (MMP9) levels were measured through immunofluorescence staining. The markers arginase-1 (Arg-1), CD206 and interleukin (IL)-10 (IL-10) of M2 macrophages, Wnt3a, and ß-catenin levels were measured by western blot or enzyme linked immunosorbent assay. Lentinan did not affect cell viability and proliferation in NSCLC cells. Lentinan suppressed cell invasion and reduced the expression and secretion of MMP9. Lentinan attenuated also M2 polarization of tumor-associated macrophages. Moreover, lentinan mitigated the M2 macrophage conditioned medium-mediated cell invasion and MMP9 alterations in NSCLC cells. Lentinan inhibited the activation of the Wnt/ß-catenin signaling in NSCLC cells. The activated Wnt/ß-catenin pathway reversed the suppressive effects of lentinan on cell invasion and MMP9 level in NSCLC cells. In conclusion, lentinan reduces cell invasion in NSCLC cells by inhibiting the M2 polarization of tumor-associated macrophages and the Wnt/ß-catenin signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lentinano , Neoplasias Pulmonares , Humanos , beta Catenina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lentinano/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metaloproteinase 9 da Matriz , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
5.
CNS Neurosci Ther ; 30(3): e14643, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470096

RESUMO

AIMS: Glioblastoma is the most frequent and aggressive primary brain tumor, characterized by rapid disease course and poor treatment responsiveness. The abundance of immunosuppressive macrophages in glioblastoma challenges the efficacy of novel immunotherapy. METHODS: Bulk RNA-seq and single-cell RNA-seq of glioma patients from public databases were comprehensively analyzed to illustrate macrophage infiltration patterns and molecular characteristics of podoplanin (PDPN). Multiplexed fluorescence immunohistochemistry staining of PDPN, GFAP, CD68, and CD163 were performed in glioma tissue microarray. The impact of PDPN on macrophage immunosuppressive polarization was investigated using a co-culture system. Bone marrow-derived macrophages (BMDMs) and OT-II T cells isolated from BALB/c and OT-II mice respectively were co-cultured to determine T-cell adherence. Pathway alterations were probed through RNA sequencing and western blot analyses. RESULTS: Our findings demonstrated that PDPN is notably correlated with the expression of CD68 and CD163 in glioma tissues. Additionally, macrophages phagocytosing PDPN-containing EVs (EVsPDPN ) from GBM cells presented increased CD163 expression and augmented secretion of immunoregulatory cytokine (IL-6, IL-10, TNF-α, and TGF-ß1). PDPN within EVs was also associated with enhanced phagocytic activity and reduced MHC II expression in macrophages, compromising CD4+ T-cell activation. CONCLUSIONS: This investigation underscores that EVsPDPN derived from glioblastoma cells contributes to M2 macrophage-mediated immunosuppression and is a potential prognostic marker and therapeutic target in glioblastoma.


Assuntos
Exossomos , Glioblastoma , Glioma , Animais , Humanos , Camundongos , Exossomos/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Tolerância Imunológica , Fatores de Transcrição , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
6.
Cancer Lett ; 588: 216784, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38458594

RESUMO

Glycolytic metabolism is a hallmark of pancreatic ductal adenocarcinoma (PDAC), and tumor-associated stromal cells play important roles in tumor metabolism. We previously reported that tumor-associated macrophages (TAMs) facilitate PDAC progression. However, little is known about whether TAMs are involved in regulating glycolysis in PDAC. Here, we found a positive correlation between CD68+ TAM infiltration and FDG maximal standardized uptake (FDG SUVmax) on PET-CT images of PDAC. We discovered that the glycolytic gene set was prominently enriched in the high TAM infiltration group through Gene Set Enrichment Analysis using The Cancer Genome Atlas database. Mechanistically, TAMs secreted IL-8 to promote GLUT3 expression in PDAC cells, enhancing tumor glycolysis both in vitro and in vivo, whereas this effect could be blocked by the IL-8 receptor inhibitor reparixin. Furthermore, IL-8 promoted the translocation of phosphorylated STAT3 into the nucleus to activate the GLUT3 promoter. Overall, we demonstrated that TAMs boosted PDAC cell glycolysis through the IL-8/STAT3/GLUT3 signaling pathway. Our cumulative findings suggest that the abrogation of TAM-induced tumor glycolysis by reparixin might exhibit an antitumor impact and offer a potential therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sulfonamidas , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Macrófagos Associados a Tumor/metabolismo , Fluordesoxiglucose F18/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Macrófagos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Transdução de Sinais , Glicólise , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
Int Immunopharmacol ; 131: 111907, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38520786

RESUMO

AIM: Through network pharmacology, molecular docking, molecular dynamics in combination with experimentation, we explored the mechanism whereby 1-ethoxycarbonyl-beta-carboline (EBC) regulates the M2 polarization of tumor-associated macrophages. METHODS: Network pharmacology was adopted for analyzing the targets and signaling pathways related to the M2 polarization of EBC-macrophages, small molecular-protein docking was employed to analyze the possibility of EBC bonding to related protein, and molecular dynamics was introduced to analyze the binding energy between EBC and HDAC2. The M2 polarization of RAW264.7 macrophages was triggered in vitro by IL-4. After EBC intervention, the expressions of M1/M2 polarization-related cytokines were detected, and the mechanism of EBC action was explored in HDAC2-knockout RAW264.7 macrophages. A tumor-bearing mouse model was established in vitro to find the impact of EBC on tumor-associated M2 macrophages. RESULTS: As revealed by the network pharmacology, molecular docking and molecular dynamics analyses, EBC was associated with 51 proteins, including HDAC2, NF-κB and HDAC4. Molecular docking and dynamics analyses suggested that HDAC2 was the main target of EBC. In vitro experiments discovered that EBC could hinder the M2 polarization of RAW264.7 macrophages, which exerted insignificant effect on the M1-associated cytokines, but could lower the levels of M2-associated cytokines. After knocking out HDAC2, EBC could not further inhibit the M2 polarization of macrophages. At the mouse level, EBC could hinder the tumor growth and the tissue levels of M2 macrophages, whose effect was associated with HDAC2. CONCLUSION: Our study combining multiple methods finds that EBC inhibits the HDAC2-mediated M2 polarization of macrophages, thereby playing an anti-tumor role.


Assuntos
Farmacologia em Rede , Macrófagos Associados a Tumor , Animais , Camundongos , Simulação de Acoplamento Molecular , Macrófagos Associados a Tumor/metabolismo , Citocinas/metabolismo , Carbolinas/farmacologia , Carbolinas/uso terapêutico
8.
J Exp Clin Cancer Res ; 43(1): 63, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424624

RESUMO

BACKGROUND: Lung cancer is one of the most common tumors in the world, and metastasis is one of the major causes of tumor-related death in lung cancer patients. Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and are frequently associated with tumor metastasis in human cancers. However, the regulatory mechanisms of TAMs in lung cancer metastasis remain unclear. METHODS: Single-cell sequencing analysis of lung cancer and normal tissues from public databases and from 14 patients who underwent surgery at Zhongshan Hospital was performed. In vitro co-culture experiments were performed to evaluate the effects of TAMs on lung cancer migration and invasion. Changes in the expression of IL-6, STAT3, C/EBPΒ, and EMT pathway were verified using RT-qPCR, western blotting, and immunofluorescence. Dual luciferase reporter assays and ChIP were used to reveal potential regulatory sites on the transcription factor sets. In addition, the effects of TAMs on lung cancer progression and metastasis were confirmed by in vivo models. RESULTS: TAM infiltration is associated with tumor progression and poor prognosis. IL-6 secreted by TAMs can activate the JAK2/STAT3 pathway through autocrine secretion, and STAT3 acts as a transcription factor to activate the expression of C/EBPß, which further promotes the transcription and expression of IL-6, forming positive feedback loops for IL6-STAT3-C/EBPß-IL6 in TAMs. IL-6 secreted by TAMs promotes lung cancer progression and metastasis in vivo and in vitro by activating the EMT pathway, which can be attenuated by the use of JAK2/STAT3 pathway inhibitors or IL-6 monoclonal antibodies. CONCLUSIONS: Our data suggest that TAMs promote IL-6 expression by forming an IL6-STAT3-C/EBPß-IL6 positive feedback loop. Released IL-6 can induce the EMT pathway in lung cancer to enhance migration, invasion, and metastasis. The use of IL-6-neutralizing antibody can partially counteract the promotion of LUAD by TAMs. A novel mechanism of macrophage-promoted tumor progression was revealed, and the IL6-STAT3-C/EBPß-IL6 signaling cascade may be a potential therapeutic target against lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Interleucina-6/metabolismo , Macrófagos Associados a Tumor/metabolismo , Linhagem Celular Tumoral , Retroalimentação , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Fatores de Transcrição/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral , Transição Epitelial-Mesenquimal
9.
Sci Rep ; 14(1): 3778, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355711

RESUMO

Our research found that vitamin D3 (VD3) treatment increased lung metastasis in mice with 4T1 murine breast cancer (BC). This study aims to investigate the impact of VD3 on the activation of tumor-associated macrophages (TAMs) in BC. Mice bearing 4T1, E0771, 67NR BC cells, and healthy mice, were fed diets with varying VD3 contents (100-deficient, 1000-normal, and 5000 IU/kg-elevated). Some mice in the 1000 and 100 IU/kg groups received calcitriol. We studied bone metastasis and characterized TAMs and bone marrow-derived macrophages (BMDMs). 4T1 cells had higher bone metastasis potential in the 5000 IU/kg and calcitriol groups. In the same mice, an elevated tumor osteopontin level and M2 polarization of TAMs (MHCIIlow CD44high phenotype) were observed. Gene expression analysis confirmed M2 polarization of 4T1 (but not 67NR) TAMs and BMDMs, particularly in the 100 IU + cal group (increased Mrc1, Il23, and Il6). This polarization was likely due to COX-2/PGE2 induction in 4T1 calcitriol-treated cells, leading to increased proinflammatory cytokines like IL-6 and IL-23. Future studies will explore COX-2/PGE2 as a primary mediator of calcitriol-stimulated inflammation in the BC microenvironment, especially relevant for BC patients with VD3 deficiency and supplementation.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Humanos , Animais , Camundongos , Feminino , Citocinas/metabolismo , Calcitriol/farmacologia , Macrófagos Associados a Tumor/metabolismo , Ciclo-Oxigenase 2/genética , Glândulas Mamárias Humanas/metabolismo , Linhagem Celular Tumoral , Neoplasias da Mama/patologia , Microambiente Tumoral
10.
Clin Transl Med ; 14(2): e1578, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38356419

RESUMO

BACKGROUND AND AIMS: In gastric cancer, the response rate of programmed cell death protein-1 (PD-1) inhibitor is far from satisfactory, indicating additional nonredundant pathways might hamper antitumour immunity. V-domain immunoglobulin suppressor of T-cell activation (VISTA) has been reported in several malignancies as a novel immune-checkpoint. Nevertheless, the role of VISTA in gastric cancer still remains obscure. Our purpose is to explore the clinical significance and potential mechanism of VISTA in affecting gastric cancer patients' survival and immunotherapeutic responsiveness. METHODS: Our study recruited eight independent cohorts with a total of 1403 gastric cancer patients. Immunohistochemistry, multiplex immunofluorescence, flow cytometry or intracellular flow cytometry, quantitative polymerase chain reaction, western blotting, fluorescence-activated cell sorting, magnetic-activated cell sorting, smart-seq2, in vitro cell co-culture and ex vivo tumour inhibition assays were applied to investigate the clinical significance and potential mechanism of VISTA in gastric cancer. RESULTS: VISTA was predominantly expressed on tumour-associated macrophages (TAMs), and indicated poor clinical outcomes and inferior immunotherapeutic responsiveness. VISTA+ TAMs showed a mixed phenotype. Co-culture of TAMs and CD8+ T cells indicated that VISTA+ TAMs attenuated effective function of CD8+ T cells. Blockade of VISTA reprogrammed TAMs to a proinflammatory phenotype, reactivated CD8+ T cells and promoted apoptosis of tumour cells. Moreover, blockade of VISTA could also enhance the efficacy of PD-1 inhibitor, suggesting that blockade of VISTA might synergise with PD-1 inhibitor in gastric cancer. CONCLUSIONS: Our data revealed that VISTA was an immune-checkpoint associated with immunotherapeutic resistance. Blockade of VISTA reprogrammed TAMs, promoted T-cell-mediated antitumour immunity, and enhanced efficacy of PD-1 inhibitor, which might have implications in the treatment of gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Linfócitos T CD8-Positivos , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico , Macrófagos Associados a Tumor/metabolismo , Imunoglobulinas
11.
ACS Appl Mater Interfaces ; 16(9): 11275-11288, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38383056

RESUMO

The current research models of breast cancer are usually limited in their capacity to recapitulate the tumor microenvironment in vitro. The lack of an extracellular matrix (ECM) oversimplifies cell-cell or cell-ECM cross-talks. Moreover, the lack of tumor-associated macrophages (TAMs), that can comprise up to 50% of some solid neoplasms, poses a major problem for recognizing various hallmarks of cancer. To address these concerns, a type of direct breast cancer cells (BCCs)-TAMs coculture organoid model was well developed by a sequential culture method in this study. Alginate cryogels were fabricated with appropriate physical and mechanical properties to serve as an alternative ECM. Then, our previous experience was leveraged to polarize TAMs inside of the cryogels for creating an in vitro immune microenvironment. The direct coculture significantly enhanced BCCs organoid growth and cancer aggressive phenotypes, including the stemness, migration, ECM remodeling, and cytokine secretion. Furthermore, transcriptomic analysis and protein-protein interaction networks implied certain pathways (PI3K-Akt pathway, MAPK signaling pathway, etc.) and targets (TNF, PPARG, TLR2, etc.) during breast cancer progression in a TAM-leading immune microenvironment. Future studies to advance treatment strategies for BCC patients may benefit from using this facile model to reveal and target the interactions between cancer signaling and the immune microenvironment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Macrófagos Associados a Tumor/metabolismo , Técnicas de Cocultura , Biomimética , Criogéis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
12.
Anticancer Res ; 44(3): 1289-1297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423652

RESUMO

BACKGROUND/AIM: Prognostic indicators for postoperative lung adenocarcinoma are elusive. The interaction between CD24 on tumor cells and sialic-acid-binding Ig-like lectin 10 (Siglec10) on tumor-associated macrophages (TAMs) is implicated in immune evasion in distinct tumors. However, the therapeutic significance of phagocytic checkpoints in lung adenocarcinoma remains unknown. We aimed to investigate the clinical relevance and prognostic significance of phagocytosis checkpoints mediated by Siglec10 in TAMs of patients with lung adenocarcinoma who underwent curative resection. PATIENTS AND METHODS: In this single-center retrospective study, we analyzed the data of 423 patients with stage I lung adenocarcinoma resected between 1999 and 2016. Tissue microarrays were constructed, and CD24, CD68, and Siglec10 immunohistochemistry was performed. Additionally, we assessed the clinical significance and prognostic associations of these markers. RESULTS: CD24 expression was higher in the Siglec10-high expression group than that in the -low expression group. Multivariate analysis showed that combined high Siglec10 and CD24 expression was an independent predictor of recurrence-free probability. The combined high Siglec10 and CD68 expression was a significant independent predictor of overall survival. Univariate analysis demonstrated that the 5-year probability of post-recurrence survival of patients with combined high Siglec10 and CD68 expression was lower than that of the other patients. CONCLUSION: High TAM Siglec10 expression and tumor CD24 expression are correlated, and the high Siglec10+CD24 combination is a major risk factor for recurrence. CD68+Siglec10 TAMs are important prognostic factors. Siglec10 expression on TAMs is essential for tumor microenvironment immunoregulation and offers a promising new immunotherapeutic approach for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo
13.
Cell Death Dis ; 15(2): 108, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302407

RESUMO

The prognosis of osteosarcoma (OS) has remained stagnant over the past two decades, requiring the exploration of new therapeutic targets. Cytokines, arising from tumor-associated macrophages (TAMs), a major component of the tumor microenvironment (TME), have garnered attention owing to their impact on tumor growth, invasion, metastasis, and resistance to chemotherapy. Nonetheless, the precise functional role of TAMs in OS progression requires further investigation. In this study, we investigated the interaction between OS and TAMs, as well as the contribution of TAM-produced cytokines to OS advancement. TAMs were observed to be more prevalent in lung metastases compared with that in primary tumors, suggesting their potential support for OS progression. To simulate the TME, OS and TAMs were co-cultured, and the cytokines resulting from this co-culture could stimulate OS proliferation, migration, and invasion. A detailed investigation of cytokines in the co-culture conditioned medium (CM) revealed a substantial increase in IL-8, establishing it as a pivotal cytokine in the process of enhancing OS proliferation, migration, and invasion through the focal adhesion kinase (FAK) pathway. In an in vivo model, co-culture CM promoted OS proliferation and lung metastasis, effects that were mitigated by anti-IL-8 antibodies. Collectively, IL-8, generated within the TME formed by OS and TAMs, accelerates OS proliferation and metastasis via the FAK pathway, thereby positioning IL-8 as a potential novel therapeutic target in OS.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Macrófagos Associados a Tumor/metabolismo , Interleucina-8/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Macrófagos/metabolismo , Neoplasias Pulmonares/patologia , Osteossarcoma/patologia , Citocinas/metabolismo , Neoplasias Ósseas/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Movimento Celular
14.
Indian J Pathol Microbiol ; 67(1): 15-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358183

RESUMO

Background: With no unified system for tumor associated macrophages (TAMs) density assessment, limited information is available on their relationship with ß-catenin expression. Aim: To evaluate the density of CD68+ TAMs in gastric adenocarcinoma samples by immunohistochemistry and correlate it with grade, stage, invasion, and beta-catenin. Designs and Settings: Formalin fixed paraffin embedded (FFPE) blocks from gastrectomy specimens of proven gastric adenocarcinoma were prospectively and retrospectively were studied over a period of two years. Materials and Methods: Immunohistochemistry with CD68 and ß-catenin was performed. TAM density was qualitatively compared in "tumor" versus "stroma" and "tumor" versus "non-tumor" regions. Quantitative CD68+ TAM density was assessed using different methods and compared. Cases were classified as high and low TAM based on the median value and correlated with histologic type, location, grade, stage and ß-catenin expression pattern. Statistical Analysis: Spearman's rank correlation test was used to compare the different methods of TAM density evaluation. The categorical variables were studied using Pearson's Chi-square or Fisher's exact test. CD68+ TAM density and ß-catenin expression were correlated by analysis of variance. A P value ≤ 0.05 was taken as statistically significant. Results: The CD68+ TAMs in the "tumor" versus "non-tumor" area (p = 0.34) and "tumor" versus "stroma distribution" (p = 0.81) did not show any statistical significance. All methods of TAM density were found to be comparable. High TAM group is significantly associated with lymphovascular invasion, tumor depth, lymph node metastasis, and abnormal ß-catenin expression. Conclusion: TAMs density plays an important role in the tumor stage. Macrophages may possibly induce gastric cancer invasiveness by activating ß-catenin pathway.


Assuntos
Adenocarcinoma , Carcinoma , Neoplasias Gástricas , Humanos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Neoplasias Gástricas/patologia , Antígenos CD/metabolismo , beta Catenina , Estudos Retrospectivos , Prognóstico
15.
Cell Rep Med ; 5(2): 101420, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382468

RESUMO

Tumor-associated macrophages (TAMs) are the predominant cells that express programmed cell death ligand 1 (PD-L1) within human tumors in addition to cancer cells, and PD-L1+ TAMs are generally thought to be immunosuppressive within the tumor immune microenvironment (TIME). Using single-cell transcriptomic and spatial multiplex immunofluorescence analyses, we show that PD-L1+ TAMs are mature and immunostimulatory with spatial preference to T cells. In contrast, PD-L1- TAMs are immunosuppressive and spatially co-localize with cancer cells. Either higher density of PD-L1+ TAMs alone or ratio of PD-L1+/PD-L1- TAMs correlate with favorable clinical outcome in two independent cohorts of patients with breast cancer. Mechanistically, we show that PD-L1 is upregulated during the monocyte-to-macrophage maturation and differentiation process and does not require external IFN-γ stimulus. Functionally, PD-L1+ TAMs are more mature/activated and promote CD8+ T cells proliferation and cytotoxic capacity. Together, our findings reveal insights into the immunological significance of PD-L1 within the TIME.


Assuntos
Neoplasias da Mama , Macrófagos Associados a Tumor , Humanos , Feminino , Macrófagos Associados a Tumor/metabolismo , Neoplasias da Mama/metabolismo , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/metabolismo , Macrófagos , Microambiente Tumoral
16.
Crit Rev Oncol Hematol ; 196: 104284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311012

RESUMO

Non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide. Different treatment approaches are typically employed based on the stage of NSCLC. Common clinical treatment methods include surgical resection, drug therapy, and radiation therapy. However, with the introduction and utilization of immune checkpoint inhibitors, cancer treatment has entered a new era, completely revolutionizing the treatment landscape for various cancers and significantly improving overall patient survival. Concurrently, treatment resistance often poses a critical challenge, with many patients experiencing disease progression following an initial response due to treatment resistance. Increasing evidence suggests that the tumor microenvironment (TME) plays a pivotal role in treatment resistance. Tumor-associated macrophages (TAMs) within the TME can promote treatment resistance in NSCLC by secreting various cytokines activating signaling pathways, and interacting with other immune cells. Therefore, this article will focus on elucidating the key mechanisms of TAMs in treatment resistance and analyze how targeting TAMs can reduce the levels of treatment resistance in NSCLC, providing a comprehensive understanding of the principles and approaches to overcome treatment resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Citocinas , Transdução de Sinais , Microambiente Tumoral
17.
Appl Immunohistochem Mol Morphol ; 32(4): 176-182, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314768

RESUMO

In this study, we aimed to examine the relationship among cancer gland rupture microenvironment, programmed cell death ligand 1 (PD-L1) expression in CD163 + tumor-associated macrophages (TAMs), and prognosis in colon adenocarcinoma. A total of 122 patients were diagnosed with colon adenocarcinoma between 2010 and 2019. PD-L1 + (clone 22C3) "macrophage scores" in the microenvironment of cancer gland rupture were calculated. The effects of these variables on prognosis were statistically analyzed. CD163 + TAMs were denser in the cancer gland rupture microenvironment. PD-L1 + TAMs were observed in the tumor periphery, and there was a significant difference between the rates of PD-L1 expression in TAMs and survival time (log-rank = 10.46, P = 0.015), clinical stage 2 ( P = 0.038), and primary tumor 3 and primary tumor 4 cases ( P = 0.004, P = 0.013). The risk of mortality was 4.070 times higher in patients with a PD-L1 expression rate of ≥1% in CD163 + TAMs. High PD-L1 expression in CD163 + TAMs is associated with poor overall survival. Therefore, blocking PD-L1 in CD163 + TAMs can be used as a target for immunotherapy.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Adenocarcinoma/patologia , Apoptose , Antígeno B7-H1/metabolismo , Ligantes , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
18.
Redox Biol ; 71: 103093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382185

RESUMO

Solid tumors are characterized by hypoxic areas, which are prone for macrophage infiltration. Once infiltrated, macrophages polarize to tumor associated macrophages (TAM) to support tumor progression. Therefore, the crosstalk between TAMs and tumor cells is of current interest for the development of novel therapeutic strategies. These may comprise induction of an iron- and lipid peroxidation-dependent form of cell death, known as ferroptosis. To study the macrophage - tumor cell crosstalk we polarized primary human macrophages towards a TAM-like phenotype, co-cultured them with HT1080 fibrosarcoma cells, and analyzed the tumor cell response to ferroptosis induction. In TAMs the expression of ceruloplasmin mRNA increased, which was driven by hypoxia inducible factor 2 and signal transducer and activator of transcription 1. Subsequently, ceruloplasmin mRNA was transferred from TAMs to HT1080 cells via extracellular vesicles. In tumor cells, mRNA was translated into protein to protect HT1080 cells from RSL3-induced ferroptosis. Mechanistically this was based on reduced iron abundance and lipid peroxidation. Interestingly, in naïve macrophages also hypoxia induced ceruloplasmin under hypoxia and a co-culture of HT1080 cells with hypoxic macrophages recapitulated the protective effect observed in TAM co-cultures. In conclusion, TAMs provoke tumor cells to release iron and thereby protect them from lipid peroxidation/ferroptosis.


Assuntos
Ferroptose , Fibrossarcoma , Humanos , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Macrófagos Associados a Tumor/metabolismo , RNA Mensageiro/genética , Hipóxia/metabolismo , Fibrossarcoma/genética , Ferro/metabolismo , Microambiente Tumoral
19.
Cancer Immunol Immunother ; 73(2): 25, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280079

RESUMO

Macrophages constitute a major part of tumor microenvironment, and most of existing data demonstrate their ruling role in the development of anti-drug resistance of cancer cell. One of the most powerful protection system is based on heat shock proteins whose synthesis is triggered by activated Heat Shock Factor-1 (HSF1); the inhibition of the HSF1 with CL-43 sensitized A549 lung cancer cells to the anti-cancer effect of etoposide. Notably, analyzing A549 tumor xenografts in mice we observed nest-like pattern of co-localization of A549 cells demonstrating enhanced expression of HSF1 with macrophages, and decided to check whether the above arrangement has a functional value for both cell types. It was found that the incubation of A549 or DLD1 colon cancer cells with either human monocytes or THP1 monocyte-like cells activated HSF1 and increased resistance to etoposide. Importantly, the same effect was shown when primary cultures of colon tumors were incubated with THP1 cells or with human monocytes. To prove that HSF1 is implicated in enhanced resistance caused by monocytic cells, we generated an A549 cell subline devoid of HSF1 which did not respond to incubation with THP1 cells. The pharmacological inhibition of HSF1 with CL-43 also abolished the effect of THP1 cells on primary tumor cells, highlighting a new target of tumor-associated macrophages in a cell proteostasis mechanism.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistência a Medicamentos , Etoposídeo/farmacologia , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/metabolismo , Macrófagos Associados a Tumor/metabolismo
20.
Sci Rep ; 14(1): 2267, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280909

RESUMO

Osteosarcoma (OS) is a type of tumor. Osteosarcoma stem cells (OSCs) are responsible for drug resistance, recurrence, and immunosuppression in OS. We aimed to determine the heterogeneity of OSCs and the immunosuppression mechanisms underlying the interactions between OSCs and tumor-associated macrophages (TAMs). The cell components, trajectory changes, and cell communication profiles of OS cells were analyzed by transcriptomics at the single-cell level. The intercellular communication patterns of OSCs were verified, and the role of the cell hub genes was revealed. Hub geneS are genes that play important roles in regulating certain biological processes; they are often defined as the genes with the strongest regulatory effect on differentially expressed gene sets. Moreover, various cellular components of the OS microenvironment were identified. Malignant cells were grouped, and OSCs were identified. Further regrouping and communication analysis revealed that the genes in the stemness maintenance and differentiation subgroups were involved in communication with macrophages. Key receptor-ligand pairs and target gene sets for cell communication were obtained. Transcriptome data analysis revealed the key gene RARRES2, which is involved in intercellular communication between OSCs and TAMs. In vitro studies confirmed that macrophages promote RARRES2-mediated stemness maintenance in OSCs via the TAM-secreted cytokine insulin-like growth factor 1. Patient studies confirmed that RARRES2 could be a biomarker of OS. OSCs are highly heterogeneous, and different subgroups are responsible for proliferation and communication with other cells. The IGF-RARRES2 axis plays a key role in maintaining OSC stemness through communication with TAMs.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/patologia , Microambiente Tumoral/genética , Macrófagos Associados a Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...